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Note on the Iterative Calculation of Relaxation Spectra 

R. I. TANNER, Division of Engineering, Brown University, 
Providence, Rhode Island 02912 

Synopsis 
The use of exact numerical methods for calculating spectra from dynamic moduli 

is shown to lead to acceptable results when a modified numerical method is employed. 
The modification avoids the wild oscillations encountered with existing methods when 
difficult experimental data containing sudden spectral cutoffs must be analyzed. 

Methods of Calculation 
Recently it has become possible, at  least in principle, to solve the in- 

tegral equations arising in relaxation spectrum calculations by numerical 
methods with the use of digital computers. Examples of this approach are 
found in the interesting work of Hopkins.1.2 He has shown that it is most 
useful to start spectral calculations from the component G"(w) of the com- 
plex modulus G*. Accepting this, we have the following integral equation 
for the relaxation spectrum H ( T )  : 

G"(w) = J, ~ H ( T )  dT/(1 + ~ ~ 7 ~ )  

There is also a still expanding amount of work dealing with approximate 
Ferry3 reviews much of this. As an example, rules for inversion of eq. (1). 

the rule of Ninomiya and Ferry4 is 

where the data are tabulated a t  equal intervals on a logarithmic scale; 
each point is at a frequency a times the previous point. More accurate 
approximate rules can also be gene~-ated,~~~ but for many typical experiments 
eq. (2)  is quite adequate. Here we concentrate on exact numerical methods. 

With iterative methods2 it is known that some difficulties occur near the 
ends of the frequency scale, but these can easily be remedied. No physical 
G"(w) data can terminate faster than a line spectrum (6  function), and this 
fact can be used to terminate data sets at  the high-frequency end in a 
smooth manner. No terminations seem to be needed at  the low-frequency 
end. For example, in Figure 1 the data beyond w = lo3 rad/sec. is added 
to avoid the wild oscillations that would result if the data were suddenly 
stopped at  this point. By contrast, nothing was added below w = 2 rad/ 
sec., the other limit of the .test data. Provided that these precautions 
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Fig. 2. Spectra for fluid of Figure 1 calculated by various methods. 
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in addition to a small sinusoidal shear. Figure 1 shows the original dy- 
namic viscosity data (Td = G"/w)  and the data recalculated from various 
spectral estimates. To make the recalculation of G"(w), given discrete 
points of H ( T )  spaced at  logarithmic intervals (inferval a), we supposed 
that H ( T )  consisted of blocks of width log a and of varying height. Hop- 
kin9 used delta functions in his recalculations, but with our closely spaced 
data (about a quarter-decade) there is a negligible difference between the 
two methods. The Ninomiya-Ferry spectrum, eq. (2 ) ,  does not yield an 
'adequate fit upon recalculation, as the dashed line in Figure 1 shows. The 
cause of most of the error seems to be the sharp cutoff in the spectrum at  
about r = 3/y, where y is the shearing rate. The spectrum is also not 
very smooth; see Figure 2, curve B. 

Iteration until the mean error a in the dynamic viscosity (defined as the 
sum of the absolute errors in qd,  divided by the sum of the given q d )  was 
0.01, and required 11 iterations with eq. (2 )  as an algorithm. The result was 
the extraordinary curve, (curve A) in Figure 2, which is worse than the 
Ninomiya-Ferry result, curve B. Although curve A was the worst one 
found out of about 16 sets of data, it was not obvious a priori that it would 
be the most troublesome. To deal with this problem a slightly modified 
procedure was adopted. 

Smoothing Procedure 
The cure for the wildly oscillating spectrum was to use an algorithm much 

less sophisticated than eq. (2). To ensure smoothing we initially set 

H ( l / o )  = (2 /3r ) [G"(w/a )  + G " ( w )  + G"(m)I (3) 
This form was evolved from trial and error and seems to be an acceptable 
compromise between allowing smoothing and preventing information loss. 
At the end points of the frequency interval we take 

H ( l / w )  = (2/r)G"(w) (4) 
From this initial H ( r )  [with the use of eqs. (3) and (4)] the new values of 
G"(w) (=G& say) are calculated by assuming block spectra centered on 
l / o i ,  where wi are the data points. The corrections to the spectra, AH, are 
found by replacing G" with G" - G& and H with AH in eqg. (3)  and (4). 
From the sum of H and AH new values of G& are calculated; the process 
is continued until sufficient accuracy is attained. It was found that it was 
impossible to achieve an arbitrarily high accuracy; after 80 iterations about 
1.3y0 mean error on v d  persisted; only 26 iterations were required to attain 
2% accuracy. It appears that 
the residual errors left over with the present method are probably indic- 
ative of the size of the random errors in the input data. 

Due to the interest in detecting sudden spectral cutoffs with this data, 
a box spectrum reaching from r = 0 to T = 0.0562 and of unit height was 
analyzed. The inputdata set was "perfect" (three-figure) values of qd at 
quarter-decade intervals. A t  r = 0.1 the calculated H ( T )  was 0.11 (in- 

This result is shown in Figure 2, curve C. 



1652 R. I. TANNER 

stead of zero), and at 7 = 0.0316 the H ( 7 )  was 0.88 (instead of 1.00). 
Overshoots and undershoots of about 0.06 occurred in a typical way.2 
Thus it appears that quite sharp cutoffs can be detected; a drop from a 
maximum to eero can be detected in about 2 frequency intervals (= 2 log a) 
with the present method. No significant information loss has occurred; 
no better result was ever obtained with any algorithm. 

Conclusion 
We found that very smooth spectra were computed with most input-data 

sets by using the present methodlo and that acceptable results were found 
even in difficult cases such as the example given here. Although the pres- 
ent scheme is satisfactory, we expect that further improvements may be 
made by using various numerical smoothing devices iteratively, if required." 

A point of interest seems to be that the more exact the inversion from 
the standpoint of the usual approximate  method^,^ the worse the iterative 
result; we emphasize that if an acceptable iterative result is ultimately 
obtained, the algorithm is of no importance except for speed of convergence. 
Although the Ferry-Ninomiya formula, eq. (2) , avoids the derivative 
notation, it is clear that the terms in the square brackets are proportional 
to the finite-difference approximation" of the logarithmic second derivative, 
and they inevitably accentuate "noise" in the data. By contrast, eq. (3) 
continually smooths the data. This feature seems more important than 
the speed of convergence with digital methods. Using an IBM 360 com- 
puter we found that the input-output time was more important than the 
iteration time, and each inversion took 1 or 2 min. a t  most. Finally 
there seems to be no difficulty in applying the present ideas to the inversion 
of other integral relations arising in viscoelastic studies. 

Thanks are due John Casey of the Brown University Computing Center for help with 
computing. 

This note forms part of an investigation supported by the Multidisciplinary Space- 
Related Research Program (National Aeronautics and Space Administration Grant 
NGR-40-002-009) at Brown University. 
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